Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(4): uhad036, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37799628

RESUMO

The hydrophobic cuticle encasing the fruit skin surface plays critical roles during fruit development and post-harvest. Skin failure often results in the fruit surface cracking and forming a wound-periderm tissue made of suberin and lignin. The factors that make the fruit skin susceptible to cracking have yet to be fully understood. Herein, we investigated two varieties of chili peppers (Capsicum annuum L.), Numex Garnet, whose fruit has intact skin, and Vezena Slatka, whose fruit has cracked skin. Microscopical observations, gas chromatography-mass spectrometry, biochemical and gene expression assays revealed that Vezena Slatka fruit form a thicker cuticle with greater levels of cutin monomers and hydroxycinnamic acids, and highly express key cutin-related genes. The skin of these fruit also had a lower epidermal cell density due to cells with very large perimeters, and highly express genes involved in epidermal cell differentiation. We demonstrate that skin cracking in the Vezena Slatka fruit is accompanied by a spatial accumulation of lignin-like polyphenolic compounds, without the formation of a typical wound-periderm tissues made of suberized cells. Lastly, we establish that skin cracking in chili-type pepper significantly affects fruit quality during post-harvest storage in a temperature-dependent manner. In conclusion, our data highlight cuticle thickness and epidermal cell density as two critical factors determining fruit skin susceptibility to cracking in chili-type pepper fruit.

2.
Hortic Res ; 9: uhac092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669701

RESUMO

Suberized and/or lignified (i.e. lignosuberized) periderm tissue appears often on surface of fleshy fruit skin by mechanical damage caused following environmental cues or developmental programs. The mechanisms underlying lignosuberization remain largely unknown to date. Here, we combined an assortment of microscopical techniques with an integrative multi-omics approach comprising proteomics, metabolomics and lipidomics to identify novel molecular components involved in fruit skin lignosuberization. We chose to investigate the corky Sikkim cucumber (Cucumis sativus var. sikkimensis) fruit. During development, the skin of this unique species undergoes massive cracking and is coated with a thick corky layer, making it an excellent model system for revealing fundamental cellular machineries involved in fruit skin lignosuberization. The large-scale data generated provides a significant source for the field of skin periderm tissue formation in fleshy fruit and suberin metabolism.

3.
J Fungi (Basel) ; 8(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205953

RESUMO

Cuticles cover the aerial epidermis cells of terrestrial plants and thus represent the first line of defence against invading pathogens, which must overcome this hydrophobic barrier to colonise the inner cells of the host plant. The cuticle is largely built from the cutin polymer, which consists of C16 and C18 fatty acids attached to a glycerol backbone that are further modified with terminal and mid-chain hydroxyl, epoxy, and carboxy groups, all cross-linked by ester bonds. To breach the cuticle barrier, pathogenic fungal species employ cutinases-extracellular secreted enzymes with the capacity to hydrolyse the ester linkages between cutin monomers. Herein, we explore the multifaceted roles that fungal cutinases play during the major four stages of infection: (i) spore landing and adhesion to the host plant cuticle; (ii) spore germination on the host plant cuticle; (iii) spore germ tube elongation and the formation of penetrating structures; and (iv) penetration of the host plant cuticle and inner tissue colonisation. Using previous evidence from the literature and a comprehensive molecular phylogenetic tree of cutinases, we discuss the notion whether the lifestyle of a given fungal species can predict the activity nature of its cutinases.

4.
Plants (Basel) ; 11(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161373

RESUMO

Suberin is a natural biopolymer found in a variety of specialized tissues, including seed coat integuments, root endodermis, tree bark, potato tuber skin and the russeted and reticulated skin of fruits. The suberin polymer consists of polyaliphatic and polyphenolic domains. The former is made of very long chain fatty acids, primary alcohols and a glycerol backbone, while the latter consists of p-hydroxycinnamic acid derivatives, which originate from the core phenylpropanoid pathway. In the current review, we survey the current knowledge on genes/enzymes associated with the suberin biosynthetic pathway in plants, reflecting the outcomes of considerable research efforts in the last two decades. We discuss the function of these genes/enzymes with respect to suberin aromatic and aliphatic monomer biosynthesis, suberin monomer transport, and suberin pathway regulation. We also delineate the consequences of the altered expression/accumulation of these genes/enzymes in transgenic plants.

5.
Front Plant Sci ; 12: 663165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249035

RESUMO

The aerial surfaces of plants are covered by a protective barrier formed by the cutin polyester and waxes, collectively referred to as the cuticle. Plant cuticles prevent the loss of water, regulate transpiration, and facilitate the transport of gases and solutes. As the cuticle covers the outermost epidermal cell layer, it also acts as the first line of defense against environmental cues and biotic stresses triggered by a large array of pathogens and pests, such as fungi, bacteria, and insects. Numerous studies highlight the cuticle interface as the site of complex molecular interactions between plants and pathogens. Here, we outline the multidimensional roles of cuticle-derived components, namely, epicuticular waxes and cutin monomers, during plant interactions with pathogenic fungi. We describe how certain wax components affect various pre-penetration and infection processes of fungi with different lifestyles, and then shift our focus to the roles played by the cutin monomers that are released from the cuticle owing to the activity of fungal cutinases during the early stages of infection. We discuss how cutin monomers can activate fungal cutinases and initiate the formation of infection organs, the significant impacts of cuticle defects on the nature of plant-fungal interactions, along with the possible mechanisms raised thus far in the debate on how host plants perceive cutin monomers and/or cuticle defects to elicit defense responses.

6.
Plant Mol Biol ; 106(6): 505-520, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34176052

RESUMO

KEY MESSAGE: Gene expression analysis coupled with in-planta studies showed that specific Gßγ combination regulates plant growth and defence traits in the allotetraploid Brassica juncea. Plant heterotrimeric G-proteins regulate a wide range of responses despite their limited repertoire of core components. The roles and functional interactions between different G-protein subunits are quite perplexing, which get further complicated with polyploidy. Here, we show that the allotetraploid Brassica juncea comprises multiple homologs of G-protein genes, encoding six BjuGß and ten highly divergent BjuGγ subunit proteins, later being classified into type-A1, type-A2 and type-C Gγ proteins. The encoded BjuGß and BjuGγ proteins shared close evolutionary relationship and have retained distinct spatio-temporal expression patterns during plant developmental stages and in response to the necrotrophic pathogen, Sclerotinia sclerotiorum. RNAi based suppression of BjuGß and BjuGγ genes suggested functional overlap and selectivity of BjuGßs with three distinct BjuGγ type subunits, to regulate plant height (BjuGßγA2 and BjuGßγC), seed weight (BjuGßGγA1 and BjuGßGγC), silique size (BjuGßGγC) and pathogen response (BjuGßGγA1 and BjuGßGγC). Further, the triplicated BjuGß genes, formed due to Brassica specific whole-genome-triplication event, showed differential involvement during pathogen response, wherein overexpression of BjuGß2 displayed higher resistance to Sclerotinia infection. Taken together, our study demonstrates that multiple BjuGß and BjuGγ proteins have retained distinct spatio-temporal expression and functional selectivity to regulate specific plant growth and defence traits in the oilseed B. juncea.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Mostardeira/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Poliploidia , Ascomicetos/fisiologia , Resistência à Doença/genética , Subunidades beta da Proteína de Ligação ao GTP/classificação , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/classificação , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Modelos Genéticos , Mostardeira/crescimento & desenvolvimento , Mostardeira/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA
7.
Microorganisms ; 8(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674341

RESUMO

The necrotrophic fungus Botrytis cinerea, is considered a major cause of postharvest losses in a wide range of crops. The common fungal extracellular membrane protein (CFEM), containing a conserved eight-cysteine pattern, was found exclusively in fungi. Previous studies in phytopathogenic fungi have demonstrated the role of membrane-bound and secreted CFEM-containing proteins in different aspects of fungal virulence. However, non-G protein-coupled receptor (non-GPCR) membrane CFEM proteins have not been studied yet in phytopathogenic fungi. In the present study, we have identified a non-GPCR membrane-bound CFEM-containing protein, Bcin07g03260, in the B. cinerea genome, and generated deletion mutants, ΔCFEM-Bcin07g03260, to study its potential role in physiology and virulence. Three independent ΔCFEM-Bcin07g03260 mutants showed significantly reduced progression of a necrotic lesion on tomato (Solanum lycopersicum) leaves. Further analysis of the mutants revealed significant reduction (approximately 20-30%) in conidial germination and consequent germ tube elongation compared with the WT. Our data complements a previous study of secreted ΔCFEM1 mutants of B. cinerea that showed reduced progression of necrotic lesions on leaves, without effect on germination. Considering various functions identified for CFEM proteins in fungal virulence, our work illustrates a potential new role for a non-GPCR membrane CFEM in pathogenic fungi to control virulence in the fungus B. cinerea.

8.
Mol Plant Microbe Interact ; 33(9): 1103-1107, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32552519

RESUMO

Botrytis cinerea is a foliar necrotrophic fungal-pathogen capable of infecting >580 genera of plants, is often used as model organism for studying fungal-host interactions. We used RNAseq to study transcriptome of B. cinerea infection on a major (worldwide) vegetable crop, tomato (Solanum lycopersicum). Most previous works explored only few infection stages, using RNA extracted from entire leaf-organ diluting the expression of studied infected region. Many studied B. cinerea infection, on detached organs assuming that similar defense/physiological reactions occurs in the intact plant. We analyzed transcriptome of the pathogen and host in 5 infection stages of whole-plant leaves at the infection site. We supply high quality, pathogen-enriched gene count that facilitates future research of the molecular processes regulating the infection process.


Assuntos
Botrytis/genética , Doenças das Plantas/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...